Galvanic Corrosion among Different Combination of Orthodontic Archwires and Stainless Steel Brackets

Farzin Heravi 1, Nima Mokhber 2, Elnaz Shayan 3

1 Dental Materials Research Center, Department of Orthodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Orthodontics, Academic Center of Education, Culture and Research, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Endodontics, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran

Received 27 February 2014 and Accepted 28 May 2014

Abstract

Introduction: The aim of this study was to assess the galvanic behavior of different bracket and archwire combinations that are commonly used in orthodontic treatments. Methods: Three types of orthodontic archwires with a diameter of 0.016×0.022 inch and 80 standard edgewise maxillary central incisor brackets were selected. Three groups consisted of different wire-bracket couples and one group was just brackets as a control group. Each group had five samples. Four brackets were then connected to each wire by elastic bands made from electrochemically neutral material. The samples were immersed into capped containers of Fusayama-Meyer artificial saliva. After six weeks, the released nickel ions were quantified via ion absorption technique. The mean and the standard deviation of all four groups were calculated and the data were compared together with Kruskal-Wallis non-parametric statistical test. Results: The highest concentration of released nickel ions was for bracket+ steel archwire and the least for the bracket without archwire. Conclusion: There were not significant differences among experimental groups, so it could be concluded that galvonic corrosion would not be a serious consideration through orthodontic treatment.

Key words: artificial saliva, bracket, galvanic corrosion, orthodontic archwire.
Corrosion, might compromise the appliance’s esthetics, increase friction during sliding, result in wire fractures, and diminish the torque expression of preadjusted appliances (5,6,12-16).

Considering these negative consequences and since an important part of orthodontic devices such as bands, brackets, and archwires are made of metallic alloys, the focus of many studies has been on corrosion in orthodontic appliances (17-20). Most research on corrosion has observed the measurement of ion release, notably nickel ion, or the effect of certain ions, such as fluoride, on corrosion resistance of metals (25-27). Fewer studies have considered galvanic corrosion with various combinations of brackets and wires (1,28-31). Therefore, we aimed to compare the galvanic behavior of different combinations of brackets and archwires that are commonly used in most orthodontic practices.

Materials and Methods

In this study, three types of orthodontic archwires and 80 standard edgewise maxillary central incisor brackets (Equilibrium 2, Dentaurum, Ispringen, Germany) with a slot size of 0.018 inch were used. These three types of archwires were designated as follows: NiTi (Dentaurum, Ispringen, Germany), TMA (Dentsply GAC, Calexico, CA, USA), and Stainless steel (Dentaurum, Ispringen, Germany), each with a diameter of 0.016×0.022 inches. The test was composed of four groups, three of which consisted of different wire-bracket couples and the forth was just brackets as a control group. Each group had five samples. All similar specimens were from the same batch number and tested in “as-received” condition from the manufacturers. The wires were cut into 40 mm long specimens. All materials were degreased by swabbing with acetone and placed in an ultrasonic container with distilled water for 10 minutes before testing. Finally they were dried with a hairdryer. Four brackets, then, were connected to each wire by elastic bands made from electrochemically neutral material (American orthodontics, Sheboygan, WI, USA). The bases of all brackets were painted with nail polish to insulate the brackets’ meshes from the corrosive effect of the medium. The samples were immersed into capped containers, including 1.8 cc Fusayama-Meyer artificial saliva (Table 1) and placed inside one incubator (GCA, Precision Scientific) with a temperature of 37±1°C.

After six weeks, the samples were removed from the incubator and sent to chemical lab for ion absorption test to evaluate the concentration of nickel ion in each medium. The mean and the standard deviation of all four groups calculated and the data were compared together with Kruskal-Wallis non-parametrical statistical test, carried out by SPSS 11.0 (SPSS 11.0 Windows, SPSS Inc, Chicago).

Results

As to the obtained data, charted in the Table 2, the highest concentration of released nickel ion belonged to the third group (steel bracket+ steel archwire) and the least was for the fourth group (steel bracket without archwire). Amid these two groups, Bracket-NiTi wire and Bracket-TMA wire groups were in second and third rank, respectively.

As it could be seen, the average of nickel ion concentrations was roughly the same in the groups including NiTi wires and steel wires (Table 2).

However, Based on Kruskal-Wallis test, there were no significant differences in the amount of nickel ion concentration among the four groups (P= 0.319).

<table>
<thead>
<tr>
<th>Chemical compound</th>
<th>Concentration (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>0.4</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.4</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>0.906</td>
</tr>
<tr>
<td>NaH₂PO₄·2H₂O</td>
<td>0.690</td>
</tr>
<tr>
<td>Na₂S·9H₂O</td>
<td>0.005</td>
</tr>
<tr>
<td>CO (NH₂)₂</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Table 1. Fusayama-Meyer artificial saliva solution composition
Discussion

Nowadays, many new alloys have been introduced and were used as to their physical and mechanical properties in modern orthodontic treatments. Archwires made of nickel-titanium (NiTi), titanium-molybdenum (TMA), and also stainless steel are examples that are suitable to apply optimum and physiological forces to teeth.

It has been proved that orthodontic archwires could lead to adjacent brackets corrosion in oral cavity in the presence of saliva, and it would be intensified if two alloys were not similar. In electrochemical corrosion, a galvanic cell is created when two different metals, or different areas on the same metal, are coupled. In galvanic corrosion, some current flows between the anodic and the cathodic areas situated at different parts of a metallic surface or between different metals of the same or different materials. The driving force for corrosion is a potential difference between the different materials (32-35).

Clinically, mixed alloys having different corrosion potentials are often placed in contact in the oral environment, as with orthodontic brackets and archwires. This can cause galvanic corrosion that leads to preferential release of metal ions from the anodic alloy (galvanic corrosion) (32-35).

While it is common for orthodontists to use such archwires in their treatments, hypersensitivity to nickel ion in some cases has been reported and some studies showed an allergic as well as toxic effect for this metallic ion (13-15). On the other hand, corrosion is able to deteriorate mechanical properties of archwires.

Present research, conducted in order to compare the amount of nickel ion released from different archwire-bracket complex, the control group, which included just brackets without any orthodontic wires, illustrated the least amount of the ion while the most belonged to stainless steel brackets coupled with steel archwires (Table 2). This finding was similar to the results of Kim’s study, compared the corrosion resistance of different types of orthodontic archwires in a normal saline solution (19).

However, there were not any statistical differences in the amount of nickel ion release among tested groups (P=0.319). Therefore, it could be concluded that galvanic corrosion would not be a major concern to intensify nickel release in oral cavity during orthodontic treatments.

There are, nevertheless, many factors intervening in corrosion resistance changes in vivo that ought to be taken into account. On the other hand, in-vitro studies testing corrosion resistance lack the simulation of the oral cavity with its multifactorial environment. It is difficult to produce a similar corrosive environment. Studies showed that the surface roughness of orthodontic archwires should to be taken as an important indicator of the trend toward archwires’ corrosion resistance (36,37). The surface defects on orthodontic archwire produced during the manufacturing procedure can be the probable locations for corrosion occurrence (38).

Although in vivo studies are extremely beneficial in explaining how oral tissues and orthodontic materials react in their actual functioning environment, the interpretation of the results is usually difficult because of many factors not under experimental control. So in this study, we decided to evaluate galvanic corrosion behavior of different types of orthodontic archwires in vitro.

Conclusion

Based on the results obtained in this study, it could be concluded as follows:

• The least amount of nickel ion release was for control group (bracket alone without any combined archwire) and the most for bracket-stainless steel archwire.
• The order of nickel release in experimental group was:
 Bracket-stainless steel wire > bracket- NiTi wire > bracket-TMA wire > bracket only
• There were no significant differences among experimental groups, so it could be concluded that galvanic corrosion would not be a serious consideration through orthodontic treatment.

References

1. Bakhtari A, Bradley TG, Lobb WK, Berzins DW. Galvanic corrosion between various combinations

23. Petoumeno E, Kislyuk M, Hoederath H, Keilig L, Bourauel C, Jäger A. Corrosion susceptibility and nickel release of nickel titanium wires during...

Corresponding Author:
Nima Mokhber
Department of Orthodontics
Academic Center of Education, Culture, and Research (ACECR), Mashhad, Iran
Tel: +98(511) 8436425
Fax: +98(511) 8421950
E-mail: nimamokhber@yahoo.com